Applied Sciences (Nov 2018)
Effect of Structure and Chemical Activation on the Adsorption Properties of Green Clay Minerals for the Removal of Cationic Dye
Abstract
In this study, natural clay minerals with green appearance were treated with sulfuric acid. Mass percentage of acid (wt%), temperature (T), contact time (t) and liquid-to-solid mass ratio (R) are used as the prevailing factors that determine the extent of acid-activation. The values of these factors range from 15⁻50%, 60⁻90 °C, 1.5⁻6 h and 4⁻7, respectively. The study has focused on the structural changes as well as textural characteristics of the clay. Three activated clay samples were prepared under different treatment conditions. The samples were characterized using X-ray powder diffraction (XRD), fourier transform infrared (FTIR), scanning electron microscope (SEM), chemical analysis and N2 adsorption techniques. Characterization of the treated clay minerals exhibited significant structural changes to a greater extent of acid-activation, from being partially crystalline to being amorphous silica. The surface area and total pore volume of clay increased proportionally with the level of acid treatment. The average pore diameter behaved differently. During the strong acid treatment, a large increase in pore volume and the enlargement of the pore size distribution were observed. This suggests that considerable structural changes and partial destruction may have occurred in this condition. The removal of methylene blue, used as cationic dye, from aqueous solution by the batch adsorption technique on three prepared acid-activated clay samples was studied. The Langmuir model was found to agree well with the experimental data.
Keywords