Sensors (Mar 2023)

Identification and Classification of Small Sample Desert Grassland Vegetation Communities Based on Dynamic Graph Convolution and UAV Hyperspectral Imagery

  • Tao Zhang,
  • Yuge Bi,
  • Xiangbing Zhu,
  • Xinchao Gao

DOI
https://doi.org/10.3390/s23052856
Journal volume & issue
Vol. 23, no. 5
p. 2856

Abstract

Read online

Desert steppes are the last barrier to protecting the steppe ecosystem. However, existing grassland monitoring methods still mainly use traditional monitoring methods, which have certain limitations in the monitoring process. Additionally, the existing deep learning classification models of desert and grassland still use traditional convolutional neural networks for classification, which cannot adapt to the classification task of irregular ground objects, which limits the classification performance of the model. To address the above problems, this paper uses a UAV hyperspectral remote sensing platform for data acquisition and proposes a spatial neighborhood dynamic graph convolution network (SN_DGCN) for degraded grassland vegetation community classification. The results show that the proposed classification model had the highest classification accuracy compared to the seven classification models of MLP, 1DCNN, 2DCNN, 3DCNN, Resnet18, Densenet121, and SN_GCN; its OA, AA, and kappa were 97.13%, 96.50%, and 96.05% in the case of only 10 samples per class of features, respectively; The classification performance was stable under different numbers of training samples, had better generalization ability in the classification task of small samples, and was more effective for the classification task of irregular features. Meanwhile, the latest desert grassland classification models were also compared, which fully demonstrated the superior classification performance of the proposed model in this paper. The proposed model provides a new method for the classification of vegetation communities in desert grasslands, which is helpful for the management and restoration of desert steppes.

Keywords