Energies (May 2019)

Wind Resource Assessment of the Southernmost Region of Thailand Using Atmospheric and Computational Fluid Dynamics Wind Flow Modeling

  • Jompob Waewsak,
  • Chana Chancham,
  • Somphol Chiwamongkhonkarn,
  • Yves Gagnon

DOI
https://doi.org/10.3390/en12101899
Journal volume & issue
Vol. 12, no. 10
p. 1899

Abstract

Read online

This paper presents the wind resource assessment of the southernmost region of Thailand using atmospheric and computational fluid dynamics (CFD) wind flow modeling. The predicted wind data by the Weather Research and Forecasting (WRF) atmospheric modeling, assimilated to a virtual met mast, along with high-resolution topographic and roughness digital data, are then used as the main input for the CFD microscale wind flow modeling and high resolution wind resource mapping at elevations of 80 m, 100 m, 120 m, and 140 m agl. Numerical results are validated using measured wind data. Results show that the potential area where the wind speeds at 120 m agl are above 8.0 m/s is 86 km2, corresponding to a technical power potential in the order of 300 MW. The installation of wind power plants in the areas with the best wind resource could generate 690 GWh/year of electricity, thus avoiding greenhouse gas emissions of 1.2 million tonnes CO2eq/year to the atmosphere. On the other hand, developing power plants with International Electrotechnical Commission (IEC) Class IV wind turbines in areas of lower wind resource, but with easier access, could generate nearly 3000 GWh/yr of energy, with a CO2eq emissions avoidance of 5 million tonnes CO2eq on a yearly basis.

Keywords