Remote Sensing (Jul 2021)
Application of SAR Data for Tropical Cyclone Intensity Parameters Retrieval and Symmetric Wind Field Model Development
Abstract
The spaceborne synthetic aperture radar (SAR) is an effective tool to observe tropical cyclone (TC) wind fields at very high spatial resolutions. TC wind speeds can be retrieved from cross-polarization signals without wind direction inputs. This paper proposed methodologies to retrieve TC intensity parameters; for example, surface maximum wind speed, TC fullness (TCF) and central surface pressure from the European Space Agency Sentinel-1 Extra Wide swath mode cross-polarization data. First, the MS1A geophysical model function was modified from 6 to 69 m/s, based on three TC samples’ SAR images and the collocated National Oceanic and Atmospheric Administration stepped frequency microwave radiometer wind speed measurements. Second, we retrieved the wind fields and maximum wind speeds of 42 TC samples up to category 5 acquired in the last five years, using the modified MS1A model. Third, the TCF values and central surface pressures were calculated from the 1-km wind retrievals, according to the radial curve fitting of wind speeds and two hurricane wind-pressure models. Three intensity parameters were found to be dependent upon each other. Compared with the best-track data, the averaged bias, correlation coefficient (Cor) and root mean-square error (RMSE) of the SAR-retrieved maximum wind speeds were –3.91 m/s, 0.88 and 7.99 m/s respectively, showing a better result than the retrievals before modification. For central pressure, the averaged bias, Cor and RMSE were 1.17 mb, 0.77 and 21.29 mb and respectively, indicating the accuracy of the proposed methodology for pressure retrieval. Finally, a new symmetric TC wind field model was developed with the fitting function of the TCF values and maximum wind speeds, radial wind curve and the Rankine Vortex model. By this model, TC wind field can be simulated just using the maximum wind speed and the radius of maximum wind speed. Compared with wind retrievals, averaged absolute bias and averaged RMSE of all samples’ wind fields simulated by the new model were smaller than those of the Rankine Vortex model.
Keywords