Acta Neuropathologica Communications (Oct 2023)
CD8 cytotoxic T-cell infiltrates and cellular damage in the hypothalamus in human obesity
Abstract
Abstract Rare cases of paraneoplastic obesity in children suggest sporadic obesity might also arise from an adaptive immune cell-mediated mechanism. Since the hypothalamus is a central regulator of feeding behavior and energy expenditure, we quantified lymphocytic inflammation in this region in a cohort of obese and non-obese human post-mortem brains. We report that CD8-positive cytotoxic T-cells are increased in hypothalamic median eminence/arcuate nucleus (ME/Arc) and bed nucleus of the stria terminalis in 40% of obese compared to non-obese patients, but not in other hypothalamic nuclei or brain regions. CD8 T-cells were most abundant in individuals with concurrent obesity and diabetes. Markers of cytotoxic T-cell induced damage, activated caspase 3 and poly-ADP ribose, were also elevated in the ME/Arc of obese patients. To provoke CD8 cytotoxic T-cell infiltrates in ventromedial region of hypothalamus in mice we performed stereotactic injections of an adeno-associated virus expressing immunogenic green fluorescent protein or saline. AAV but not saline injections triggered hypothalamic CD8 T-cell infiltrates associated with a rapid weight gain in mice recapitulating the findings in human obesity. This is the first description of the neuropathology of human obesity and when combined with its reconstitution in a mouse model suggests adaptive immunity may drive as much as 40% of the human condition.
Keywords