IET Renewable Power Generation (Sep 2024)
Optimal adaptive coordination of overcurrent relays in power systems protection using a new hybrid metaheuristic algorithm
Abstract
Abstract Advent of distributed generation and progression towards an intelligent grid infrastructure within the domain of contemporary electrical power systems have created dynamic load profiles. Accompanying these developments, protective relays are faced with an evolving electrical load landscape and variable fault current conditions, resulting in disparate operational timings throughout the diurnal cycle. In light of these challenges, this paper delineates the formulation and simulation of a novel adaptive protection strategy for overcurrent relays, meticulously tailored to accommodate the fluctuations in electrical load. To construct a robust framework for this adaptive mechanism, a series of hypothetical fault current scenarios are meticulously crafted to activate the relays within the briefest time interval feasible. Further innovating within this sphere, this paper introduces a new hybrid algorithm, deftly amalgamating the strengths of three preeminent metaheuristic models: Improved Harmony Search, Particle Swarm Optimization, and Differential Evolution. Simulations and analyses substantiate the efficacy of the algorithm in optimizing the coordination among overcurrent relays aiming to uphold the overarching protective imperatives of the grid. For the IEEE 6‐bus system, the mean value of the objective function during 24 h in Monte Carlo is 292.6607 and very close to 272.0758 in the simulation of eight stochastic scenarios, which contributes to the validity of the approach in practical settings. Also, in the IEEE 30‐bus system, the results of the mean relay operation time set for the hours with the lowest and highest consumption load are 17.1297 and 14.8049 s, which reveals the increase in the operation speed of the relays.
Keywords