Symmetry (Jun 2021)

Path Tracking of Permanent Magnet Synchronous Motor Using Fractional Order Fuzzy PID Controller

  • Chong-Quan Zhong,
  • Lin Wang,
  • Chuan-Fang Xu

DOI
https://doi.org/10.3390/sym13071118
Journal volume & issue
Vol. 13, no. 7
p. 1118

Abstract

Read online

Permanent magnet synchronous motor (PMSM) AC servo system has the characteristics of uncertainty, time-varying, nonlinear and fractional order. Applying the traditional control method is difficult to achieve the desired control effect. The fuzzy control has strong adaptability to the parameter change, nonlinearity and imprecise model of the controlled object. The simulation model of permanent magnet synchronous motor three closed-loop systems is established. The control principle and the realization of space vector pulse width modulation (SVPWM) are studied by using a vector control strategy. Due to the fractional-order characteristic of the motor, a fuzzy logic algorithm is used to realize the parameter self-tuning of the fractional-order proportional integral differential (PID) controller. The controller is selected as the position regulator of the servo motor. It combines the precision of fractional-order PID controller with the adaptability of fuzzy control and adds feed-forward to improve the response speed. The path tracking experiments on several different paths are carried out, and the results show that the control method is effective and can meet the trajectory tracking requirements of servo control. Finally, the speed and position tracking test of the PMSM AC servo system is carried out on the test verification platform, which verifies the effectiveness of the control algorithm.

Keywords