Diagnostics (Jul 2023)
The Accuracy of Sex Identification Using CBCT Morphometric Measurements of the Mandible, with Different Machine-Learning Algorithms—A Retrospective Study
Abstract
In forensics, predicting the sex is a crucial step in identification. Many studies have aimed to find an accurate and fast technique to estimate the sex. This study was conducted to determine the accuracy of volumetric and linear measurements of three-dimensional (3D) images of the mandible obtained from cone beam computed tomography (CBCT) radiographs, using different machine-learning (ML) models for sex identification. The CBCTs of 104 males and 104 females were included in this study. The radiographs were converted to 3D images, and the volume, surface area, and ten linear measurements of the mandible were obtained. The data were evaluated using statistical analysis and five different ML algorithms. All results were considered statistically significant at p p < 0.05. The right coronoid-to-gonion linear distance had the highest discriminative power of all the parameters. Meanwhile, Gaussian Naive Bayes (GNB) showed the best performance among all the ML models. The results of this study revealed promising outcomes; the sex can be easily determined, with high accuracy (90%).
Keywords