Shock and Vibration (Jan 2021)
An Experimental Study on the Creep Characteristics of Sandstone in the Interval of Different Critical Stresses
Abstract
Creep tests on brittle sandstone specimens were performed to investigate the time-dependent characteristics in the interval of different critical stresses. The results showed that failure will not occur when the loaded stress σ1 is less than the critical stress of dilation σcd, while all specimens were destroyed when σ1 is larger than σcd. In addition, the value of σcd was very close to the long-term strength obtained by the method of the isochronous stress-strain curve. Therefore, σcd can be regarded as the long-term strength of the sandstone specimens. When σ1 is larger than σcd, the time required for the failure of specimen tf decreases with the increase of σ1; the creep rate dε/dt increases with time t, and the specimen will be destroyed when it reaches a maximum value (dε/dt)max. Both relationships tf and σ1 and (dε/dt)max and σ1 can be described by the exponential function. Then, a nonlinear damage creep model considering the deformation damage and strength damage in the interval of different critical stresses was established, which can describe the whole creep process and predict the failure time of sandstone specimens.