Radiation Oncology (Aug 2011)
Helical tomotherapy in the treatment of pediatric malignancies: a preliminary report of feasibility and acute toxicity
Abstract
Abstract Background Radiation therapy plays a central role in the management of many childhood malignancies and Helical Tomotherapy (HT) provides potential to decrease toxicity by limiting the radiation dose to normal structures. The aim of this article was to report preliminary results of our clinical experience with HT in pediatric malignancies. Methods In this study 66 consecutive patients younger than 14 years old, treated with HT at our center between January 2006 and April 2010, have been included. We performed statistical analyses to assess the relationship between acute toxicity, graded according to the RTOG criteria, and several clinical and treatment characteristics such as a dose and irradiation volume. Results The median age of patients was 5 years. The most common tumor sites were: central nervous system (57%), abdomen (17%) and thorax (6%). The most prevalent histological types were: medulloblastoma (16 patients), neuroblastoma (9 patients) and rhabdomyosarcoma (7 patients). A total of 52 patients were treated for primary disease and 14 patients were treated for recurrent tumors. The majority of the patients (72%) were previously treated with chemotherapy. The median prescribed dose was 51 Gy (range 10-70 Gy). In 81% of cases grade 1 or 2 acute toxicity was observed. There were 11 cases (16,6%) of grade 3 hematological toxicity, two cases of grade 3 skin toxicity and one case of grade 3 emesis. Nine patients (13,6%) had grade 4 hematological toxicity. There were no cases of grade 4 non-hematological toxicities. On the univariate analysis, total dose and craniospinal irradiation (24 cases) were significantly associated with severe toxicity (grade 3 or more), whereas age and chemotherapy were not. On the multivariate analysis, craniospinal irradiation was the only significant independent risk factor for grade 3-4 toxicity. Conclusion HT in pediatric population is feasible and safe treatment modality. It is characterized by an acceptable level of acute toxicity that we have seen in this highly selected pediatric patient cohort with clinical features of poor prognosis and/or aggressive therapy needed. Despite of a dosimetrical advantage of HT technique, an exhaustive analysis of long-term follow-up data is needed to assess late toxicity, especially in this potentially sensitive to radiation population.
Keywords