Jurnal Teknologi Informasi dan Ilmu Komputer (Oct 2023)
Easy Data Augmentation untuk Data yang Imbalance pada Konsultasi Kesehatan Daring
Abstract
Pendekatan augmentasi teks sering digunakan untuk menangani imbalance data pada kasus klasifikasi teks, seperti teks Konsultasi Kesehatan Daring (KKD), yaitu alodokter.com. Teknik oversampling dapat mengatasi kondisi skewed terhadap kelas mayoritas. Namun, augmentasi teks dapat mengubah konten dan konteks teks karena kata-kata teks tambahan yang berlebihan. Penelitian kami menyelidiki algoritma Easy Data Augmentation (EDA), yang berbasis parafrase kalimat dalam teks KKD dengan menggunakan teknik Synonym Replacement (SR), Random Insertion (RI), Random Swap (RS), dan Random Deletion (RD). Kami menggunakan Tesaurus Bahasa Indonesia untuk mengubah sinonim di EDA dan melakukan percobaan pada parameter yang dibutuhkan oleh algoritma untuk mendapatkan hasil augmentasi teks yang optimal. Kemudian, percobaan menyelidiki proses augmentasi kami menggunakan pengklasifikasi Random Forest, Naïve Bayes, dan metode berbasis peningkatan seperti XGBoost dan ADABoost, yang menghasilkan peningkatan akurasi rata-rata sebesar 0,63. Hasil parameter EDA terbaik diperoleh dengan menambahkan nilai 0,1 pada semua teknik EDA mendapatkan 88,86% dan 88,44% untuk akurasi dan nilai F1-score. Kami juga memverifikasi hasil EDA dengan mengukur koherensi teks sebelum dan sesudah augmentasi menggunakan pemodelan topik Latent Dirichlet Allocation (LDA) untuk memastikan konsistensi topik. Proses EDA dengan RI memberikan koherensi yang lebih baik sebesar 0,55 dan dapat mendukung implementasi EDA untuk menangani imbalance data, yang pada akhirnya dapat meningkatkan kinerja klasifikasi. Abstract The text augmentation approach is often utilized for handling imbalanced data of classifying text corpus, such as online health consultation (OHC) texts, i.e., alodokter.com. The oversampling technique can overcome the skewed condition towards majority classes. However, text augmentation could change text content and context because of excessive words of additional texts. Our work investigates the Easy Data Augmentation (EDA) algorithm, which is sentence paraphrase-based in the OHC texts that often in non-formal sentences by using techniques of synonym replacement (SR), random insertion (RI), random swap (RS), and random deletion (RD). We employ the Indonesian thesaurus for changing synonyms in the EDA and do empirical experiments on parameters required by the algorithm to obtain optimal results of text augmentation. Then, the experiments investigate our augmentation process using classifiers of Random Forest, Naïve Bayes, and boosting-based methods like XGBoost and ADABoost, which resulted in an average accuracy increase of 0.63. The best EDA parameter results were acquired by adding a value of 0.1 in all EDA techniques to get 88.86% and 88.44% for accuracy and F1-score values. We also verified the EDA results by measuring coherences of texts before and after augmentation using a topic modeling of Latent Dirichlet Allocation (LDA) to ensure topic consistency. The EDA process with RI gave better coherences of 0.55, and it could support the EDA application to handle imbalanced data, eventually improving the classification performance.