EPJ Web of Conferences (Jan 2018)
Heat Treatment Effect on Magnetic Microstructure of Fe73.9Cu1Nb3Si13.2B8.9 Thin Films
Abstract
Fe73.9Cu1Nb3Si13.2B8.9 (Finemet) thin films were deposited on the glass substrates by means of radio frequency sputtering. The films thickness was varied from 10 to 200 nm. Heat treatment at temperatures of 350, 400 and 450 °C were performed for 30 minutes in order to control thin film structural state. The X-ray powder diffractometry revealed that the crystallization of α-FeSi nanograins took place only at 450 °C whilst the other samples stayed in the amorphous state. Relation between the structure and magnetic properties of the films was discussed in the framework of random magnetic anisotropy model and the concept of stochastic magnetic domains. The latter was investigated using magnetic force microscopy (MFM). MFM data showed formation of such magnetic domains only in samples thermally treated at 450 °C. There was a tendency of the magnetic domain size reduction with the thickness decrease.