Adsorption Science & Technology (May 2017)

Adsorption of Bisphenol-A by bark/magnetite composite: Modeling the effect of some independent parameters by multiple linear regression

  • Behzat Balci,
  • Fatma Elcin Erkurt

DOI
https://doi.org/10.1177/0263617416676819
Journal volume & issue
Vol. 35

Abstract

Read online

In the present study, Eucalyptus camaldulensis bark/magnetite composite was used for potential application as a low-cost adsorbent for the removal Bisphenol-A. The effects of various independent parameters, contact time, initial Bisphenol-A concentration, temperature, pH, and Eucalyptus camaldulensis bark/magnetite composite dosage on adsorption were investigated. It was found that the adsorption capacity of Eucalyptus camaldulensis bark/magnetite composite increases with the increasing of Bisphenol-A concentration, temperature, and decreasing dosage of Eucalyptus camaldulensis bark/magnetite composite. The adsorption capacity was found to be 290.6 mg/g with 0.1 g Eucalyptus camaldulensis bark/magnetite composite at pH 7 and 50℃. The Freundlich isotherm model described the adsorption process better (R 2 = 0.998) than the Langmuir, Dubinin–Radushkevich, Jovanovic, and Vieth–Sladek isotherm models. According to multiple linear regression analysis, Eucalyptus camaldulensis bark/magnetite composite dosage is the most effective parameter on adsorption capacity at equilibrium and independent variables accounted for 79.4% of the total variability of equilibrium adsorption capacity of Eucalyptus camaldulensis bark/magnetite composite.