Acta Biomedica Scientifica (Jan 2024)

Online service for interpretation of the resistance prediction results to bedaquiline by the molecular data

  • V. V. Sinkov,
  • I. G. Kondratov,
  • O. B. Ogarkov,
  • S. N. Zhdanova,
  • A. P. Noskov,
  • P. A. Khromova,
  • E. A. Orlova,
  • A. V. Labygina,
  • L. V. Rychkova,
  • L. I. Kolesnikova

DOI
https://doi.org/10.29413/ABS.2023-8.6.11
Journal volume & issue
Vol. 8, no. 6
pp. 124 – 129

Abstract

Read online

Background. Bedaquiline is a new and promising anti-tuberculosis drug, but longterm use requires resistance. This is due to mutations in the atpE and mmpR genes in M. tuberculosis (MBT).The aim of the research was to test a system for automated interpretation of results for predicting resistance to bedaquiline by the molecular data.Materials and methods. DNA was isolated from strains of M. tuberculosis in the Irkutsk region and Yakutia. The total quantity of DNA samples was 27 strains from Yakutia and 21 strains from the Irkutsk region. The study of MBT genomes was carried out on the DNA previously obtained by the authors in the territories of the Irkutsk region (n = 5), Yakutia (n = 4), Buryatia (n = 3), Zabaykalskiy kray (n = 4) and the Far East (n = 8). We used the BSATool program to detect bedaquiline resistance based on Sanger and genomic data. Sanger sequencing analyzed the atpE and mmpR genes, and whole genome sequencing examined mutations in the same sequences, as well as additionally in mmpL5, mmpS5, Rv0678, Rv1979c, and pepQ.Results. Complete agreement between the phenotypic and genotypic analysis of resistance to bedaquiline was found for three strains from Yakutia. One genome with significant mutations to bedaquiline was identified. A conclusion was made about the importance of molecular analysis of target genes with subsequent detection of resistance to bedaquiline in silico.

Keywords