Energies (Jul 2022)

Differences in Macromolecular Structure Evolution during the Pyrolysis of Vitrinite and Inertinite Based on In Situ FTIR and XRD Measurements

  • Meng Zhao,
  • Anmin Wang,
  • Daiyong Cao,
  • Yingchun Wei,
  • Liqi Ding

DOI
https://doi.org/10.3390/en15155334
Journal volume & issue
Vol. 15, no. 15
p. 5334

Abstract

Read online

An accurate understanding of molecular structure evolution during pyrolysis is essential for the clean utilization of coal. In this study, middle-rank coal was taken as the research subject, and vitrinite and inertinite samples were stripped from coal using a hand picking and sink–float separation process. In situ Fourier transform infrared (FTIR) spectroscopy and in situ X-ray diffraction (XRD) were performed to compare the macromolecular structure changes between vitrinite and inertinite during pyrolysis. The results show that the aromaticity (I), the polycondensation degree of aromatic rings (DOC), the average lateral sizes (La) of basic structure unit (BSU), and the stacking heights (Lc) of BSU in both vitrinite and inertinite during pyrolysis increase continuously with increasing temperature. The values of these parameters for inertinite are higher than those of vitrinite, suggesting that the aromatization degree of inertinite has always been higher than that of vitrinite. In situ FTIR spectroscopy shows that the macromolecular structure evolution of vitrinite and inertinite could be divided into three stages based on temperature: 30–200 °C, 200–300 °C, and 300–500 °C. The content of C–O–C, aromatic C=O, O–H groups, and aromatic ring C=C gradually decreases, while that of the CH2 in aliphatic hydrocarbons increases between 30 °C and 200 °C. The 200–300 °C stage is mainly filled by the synergistic effects of aliphatic and aromatic groups. The content of aliphatic groups, C–O–C groups, aromatic C=O, and aromatic ring C=C of both vitrinite and inertinite decreases greatly. The 300–500 °C stage is dominated by the aromatization and condensation of macromolecules. The substituents of the aromatic system gradually detach, leading to an increase in I and DOC. From 30 °C to 1000 °C, in situ XRD results reveal a difference in macromolecular structural evolution between vitrinite and inertinite. The arrangement of aromatic layers in vitrinite tends to be ordered during pyrolysis, whereas there are no significant changes in the inertinite. However, the aromatic layers of inertinite are always more compact than that of vitrinite. In addition, the aliphatic side chains of inertinite are more stable than that of vitrinite during the pyrolysis process.

Keywords