Systems and Soft Computing (Dec 2024)
Furniture design based on image color extraction algorithm
Abstract
With the increasing demand for personalized and customized home products, how to realize the innovative design of furniture and improve the design efficiency has become a research hotspot for related professionals. Aiming at these problems, the study extracts the main color of furniture images by optimizing the K-mean clustering algorithm, uses the simulated annealing algorithm to color-match the furniture, and reconstructs the image by edge detection to design a furniture design method based on image color extraction. The results revealed that in the foreground part, the correct rate of color match based on the design method was 95.7%, and in the background part, the correct rate of color match based on the design method was 94.81 %, which proved its effectiveness. The average feature point extraction time and the average feature point matching time of the design-based algorithm were 5.45 ms and 9.83 ms, respectively, which proved its high computational efficiency. In furniture color edge detection and overall color match, the image obtained based on the design method was significantly clearer, and the overall coherence, saturation and brightness were closer to the input image. In addition to raising the standard of furniture design, the study's design methodology increases design efficiency and offers solid technical support for the area.