Journal of Chemistry (Jan 2020)

Exploring the Benefits of Annular Rectangular Rib for Enhancing Thermal Efficiency of Nonpremixed Micro-Combustor

  • Hongcai Wang,
  • Hongru Fang,
  • Bingqian Lou,
  • Shitu Abubakar,
  • Yuqiang Li,
  • Lei Meng

DOI
https://doi.org/10.1155/2020/9410389
Journal volume & issue
Vol. 2020

Abstract

Read online

Micro-combustor can provide the required thermal energy of micro-thermal photovoltaic (MTPV) systems. The performance of MTPV is greatly affected by the effectiveness of a micro-combustor. In this study, a numerical simulation was conducted to explore the benefits of annular rectangular rib for enhancing the thermal performance of a nonpremixed micro-combustor. Based on the investigations under various rib heights, rib positions, and inlet mass flow rates, it is found that the addition of annular rectangular ribs in the micro-combustor creates a turbulent zone in the combustion chamber, thereby enhancing the heat transfer efficiency between the inner wall of the combustion chamber and the burned gas. The micro-combustor with annular rectangular rib shows a higher and more uniform wall temperature. When the H2 mass flow is 7.438 × 10−8 kg/s and the air mass flow is 2.576 × 10−6 kg/s, the optimum dimensionless rib position is at l = 6/9 and r = 0.4. At this condition, the micro-combustor has the most effective and uniform heat transfer performance and shows significant decreases in entropy generation and exergy destruction. However, the optimum l and r significantly depend on the inlet mass flow of H2/air mixture.