Atmosphere (Nov 2021)

Evaluation of a Prototype Broadband Water-Vapour Profiling Differential Absorption Lidar at Cardington, UK

  • Catherine Gaffard,
  • Zhihong Li,
  • Dawn Harrison,
  • Raisa Lehtinen,
  • Reijo Roininen

DOI
https://doi.org/10.3390/atmos12111521
Journal volume & issue
Vol. 12, no. 11
p. 1521

Abstract

Read online

For a one-month period in summer 2020, a prototype Vaisala broadband differential absorption lidar (BB-DIAL) was deployed at a Met Office research site. It was compared with in-situ observations of humidity (93 radiosonde ascents and 27 of uncrewed aerial vehicle flights) and the Met Office 1.5 km resolution numerical weather prediction (NWP) model: UK Variable resolution model (UKV). The BB-DIAL was able to collect data up to the cloud base, in all-weather situations including rain, when it was possible to reach 3 km. The average maximum height was 1300 m, with 75% of the data reaching 1000 m and 35% extending to 1500 m. Compared with radiosondes, the standard deviation for the water vapour is between 5% and 10%. The comparison with the UKV is very encouraging, with a correlation of 0.90. The error against the radiosonde is smaller than against the UKV, which is encouraging for assimilation the BB-DIAL data in UKV. Some data quality issues, such as an increase in error and variable bias in the region of overlap between the far field and close field, spurious oscillations and an unrealistic dry layer above fog are identified. Despite these issues, the overall results from this assessment are promising in terms of potential benefit, instrument reliability and capturing significant humidity changes in the boundary layer.

Keywords