Biomolecules (Dec 2020)

Targeted Nanoparticles for Fluorescence Imaging of Folate Receptor Positive Tumors

  • Aimee J. Marko,
  • Ballav M. Borah,
  • Kevin E. Siters,
  • Joseph R. Missert,
  • Anurag Gupta,
  • Paula Pera,
  • Meden F. Isaac-Lam,
  • Ravindra K. Pandey

DOI
https://doi.org/10.3390/biom10121651
Journal volume & issue
Vol. 10, no. 12
p. 1651

Abstract

Read online

This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.

Keywords