Journal of Clinical Medicine (Feb 2023)

Differentiation of Adipose-Derived Stem Cells into Smooth Muscle Cells in an Internal Anal Sphincter-Targeting Anal Incontinence Rat Model

  • Minsung Kim,
  • Bo-Young Oh,
  • Ji-Seon Lee,
  • Dogeon Yoon,
  • You-Rin Kim,
  • Wook Chun,
  • Jong Wan Kim,
  • Il Tae Son

DOI
https://doi.org/10.3390/jcm12041632
Journal volume & issue
Vol. 12, no. 4
p. 1632

Abstract

Read online

Objective: Studies on development of an anal incontinence (AI) model targeting smooth muscle cells (SMCs) of the internal anal sphincter (IAS) have not been reported. The differentiation of implanted human adipose-derived stem cells (hADScs) into SMCs in an IAS-targeting AI model has also not been demonstrated. We aimed to develop an IAS-targeting AI animal model and to determine the differentiation of hADScs into SMCs in an established model. Materials and Methods: The IAS-targeting AI model was developed by inducing cryoinjury at the inner side of the muscular layer via posterior intersphincteric dissection in Sprague–Dawley rats. Dil-stained hADScs were implanted at the IAS injury site. Multiple markers for SMCs were used to confirm molecular changes before and after cell implantation. Analyses were performed using H&E, immunofluorescence, Masson’s trichrome staining, and quantitative RT–PCR. Results: Impaired smooth muscle layers accompanying other intact layers were identified in the cryoinjury group. Specific SMC markers, including SM22α, calponin, caldesmon, SMMHC, smoothelin, and SDF-1 were significantly decreased in the cryoinjured group compared with levels in the control group. However, CoL1A1 was increased significantly in the cryoinjured group. In the hADSc-treated group, higher levels of SMMHC, smoothelin, SM22α, and α-SMA were observed at two weeks after implantation than at one week after implantation. Cell tracking revealed that Dil-stained cells were located at the site of augmented SMCs. Conclusions: This study first demonstrated that implanted hADSc restored impaired SMCs at the injury site, showing stem cell fate corresponding to the established IAS-specific AI model.

Keywords