IEEE Journal of Translational Engineering in Health and Medicine (Jan 2023)

Deep Survival Analysis With Clinical Variables for COVID-19

  • Ahmad Chaddad,
  • Lama Hassan,
  • Yousef Katib,
  • Ahmed Bouridane

DOI
https://doi.org/10.1109/JTEHM.2023.3256966
Journal volume & issue
Vol. 11
pp. 223 – 231

Abstract

Read online

Objective: Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. Methods and procedures: We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables ( $n$ =44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. Results: Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. Conclusion: Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. Clinical impact: The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient’s chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.

Keywords