Time dependence in the synthesis of Cu2FeSnS4 and some of its properties
Jorge Humberto Muñoz-Malpica,
Mery Isabel Espitia-Mayorga,
María Alejandra Cerón-Achicanoy,
Jairo Alberto Gómez-Cuaspud,
Enrique Vera-López
Affiliations
Jorge Humberto Muñoz-Malpica
Instituto para la Investigación y la Innovación en Ciencia y Tecnología de Materiales (INCITEMA), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
Mery Isabel Espitia-Mayorga
Instituto para la Investigación y la Innovación en Ciencia y Tecnología de Materiales (INCITEMA), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
María Alejandra Cerón-Achicanoy
Grupo de Álgebra y Análisis, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
Jairo Alberto Gómez-Cuaspud
Instituto para la Investigación y la Innovación en Ciencia y Tecnología de Materiales (INCITEMA) y Grupo de Álgebra y Análisis, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
Enrique Vera-López
Instituto para la Investigación y la Innovación en Ciencia y Tecnología de Materiales (INCITEMA), Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
Polycrystalline Cu2FeSnS4 materials (abbreviated CFTS) were synthesized by a hydrothermal route implementing a one-step thermal treatment to measure dependence on different reaction times in the stabilization and structural, vibrational, and optoelectronic properties. The structural results have shown a tetragonal system with I-42m spatial group. The vibrational analysis by Raman spectroscopy allowed the identification of additional crystal phases arising from the synthesis procedure and corroborated the presence of a stannite phase. This evaluation showed that the reaction time gave the proposed synthesis procedure, significantly affects the semiconductor behavior of the solids; consequently, the conductivity measurements evidence a decrease from 1.02x106 to 9.84x105 W at 573 K as the synthesis time increases. These results described above, corroborated that the control of the reaction time provide a tool to successful fine-tune of the structural and conductivity properties of CFTS materials.