Plants (Sep 2022)

Physiological and Proteomic Responses of Cassava to Short-Term Extreme Cool and Hot Temperature

  • Supranee Santanoo,
  • Kochaphan Vongcharoen,
  • Poramate Banterng,
  • Nimitr Vorasoot,
  • Sanun Jogloy,
  • Sittiruk Roytrakul,
  • Piyada Theerakulpisut

DOI
https://doi.org/10.3390/plants11172307
Journal volume & issue
Vol. 11, no. 17
p. 2307

Abstract

Read online

Temperature is one of the most critical factors affecting cassava metabolism and growth. This research was conducted to investigate the effects of short-term exposure to extreme cool (15 °C) and hot (45 °C) temperature on photosynthesis, biochemical and proteomics changes in potted plants of two cassava cultivars, namely Rayong 9 and Kasetsart 50. One-month-old plants were exposed to 15, 30, and 45 °C for 60 min in a temperature chamber under light intensity of 700 μmol m−2 s−1. Compared to the optimum temperature (30 °C), exposure to 15 °C resulted in 28% reduction in stomatal conductance (gs) and 62% reduction in net photosynthesis rate (Pn). In contrast, gs under 45 °C increased 2.61 folds, while Pn was reduced by 50%. The lower Pn but higher electron transport rate (ETR) of the cold-stressed plants indicated that a greater proportion of electrons was transported via alternative pathways to protect chloroplast from being damaged by reactive oxygen species (ROS). Moreover, malondialdehyde (MDA) contents, a marker related to the amount of ROS, were significantly higher at low temperature. Proteomics analysis revealed some interesting differentially expressed proteins (DEPs) including annexin, a multi-functional protein functioning in early events of heat stress signaling. In response to low-temperature stress, AP2/ERF domain-containing protein (a cold-related transcription factor) and glutaredoxin domain-containing protein (a component of redox signaling network under cold stress) were detected. Taken together, both cultivars were more sensitive to low than high temperature. Moreover, Rayong 9 displayed higher Pn under both temperature stresses, and was more efficient in controlling ROS under cold stress than Kasetsart 50.

Keywords