IEEE Access (Jan 2021)
A Small Target Detection Method Based on Deep Learning With Considerate Feature and Effectively Expanded Sample Size
Abstract
As a basic task in the field of computer vision, target detection has been concerned by many researchers. The performance of target detection method is also directly related to the research in many advanced semantic fields. Current general target detection methods are not effective in small target detection, so this paper studies the problem of small target detection and proposes a small target detection method based on deep learning with considerate feature and effectively expanded sample size. Firstly, according to the characteristics of convolutional neural network, we improve the current deep network architecture which performs well in target detection, and introduce considerate multi-feature and multi-scale detection. Then, we transform the high-resolution images obtained on the Internet by combining two groups of sampling method, so that the feature distribution of the high-resolution target is closer to that of the low-resolution target, thus effectively expanding the training data set, solving the problem that small target data is difficult to be labeled and effectively avoiding overfitting. The results show the effectiveness of the improved method in small target detection. In addition, in view of the shortage of small target detection review literature, this paper gives a comprehensive and detailed introduction to the field of small target detection in terms of related work and future work.
Keywords