PLoS Pathogens (Oct 2020)

Reactivating latent HIV with PKC agonists induces resistance to apoptosis and is associated with phosphorylation and activation of BCL2.

  • Andrea J French,
  • Sekar Natesampillai,
  • Ashton Krogman,
  • Cristina Correia,
  • Kevin L Peterson,
  • Alecia Alto,
  • Aswath P Chandrasekar,
  • Anisha Misra,
  • Ying Li,
  • Scott H Kaufmann,
  • Andrew D Badley,
  • Nathan W Cummins

DOI
https://doi.org/10.1371/journal.ppat.1008906
Journal volume & issue
Vol. 16, no. 10
p. e1008906

Abstract

Read online

Eradication of HIV-1 by the "kick and kill" strategy requires reactivation of latent virus to cause death of infected cells by either HIV-induced or immune-mediated apoptosis. To date this strategy has been unsuccessful, possibly due to insufficient cell death in reactivated cells to effectively reduce HIV-1 reservoir size. As a possible cause for this cell death resistance, we examined whether leading latency reversal agents (LRAs) affected apoptosis sensitivity of CD4 T cells. Multiple LRAs of different classes inhibited apoptosis in CD4 T cells. Protein kinase C (PKC) agonists bryostatin-1 and prostratin induced phosphorylation and enhanced neutralizing capability of the anti-apoptotic protein BCL2 in a PKC-dependent manner, leading to resistance to apoptosis induced by both intrinsic and extrinsic death stimuli. Furthermore, HIV-1 producing CD4 T cells expressed more BCL2 than uninfected cells, both in vivo and after ex vivo reactivation. Therefore, activation of BCL2 likely contributes to HIV-1 persistence after latency reversal with PKC agonists. The effects of LRAs on apoptosis sensitivity should be considered in designing HIV cure strategies predicated upon the "kick and kill" paradigm.