Opuscula Mathematica (Jan 2016)

Monotone method for Riemann-Liouville multi-order fractional differential systems

  • Zachary Denton

DOI
https://doi.org/10.7494/OpMath.2016.36.2.189
Journal volume & issue
Vol. 36, no. 2
pp. 189 – 206

Abstract

Read online

In this paper we develop the monotone method for nonlinear multi-order \(N\)-systems of Riemann-Liouville fractional differential equations. That is, a hybrid system of nonlinear equations of orders \(q_i\) where \(0 \lt q_i \lt 1\). In the development of this method we recall any needed existence results along with any necessary changes. Through the method's development we construct a generalized multi-order Mittag-Leffler function that fulfills exponential-like properties for multi-order systems. Further we prove a comparison result paramount for the discussion of fractional multi-order inequalities that utilizes lower and upper solutions of the system. The monotone method is then developed via the construction of sequences of linear systems based on the upper and lower solutions, and are used to approximate the solution of the original nonlinear multi-order system.

Keywords