BMC Medical Imaging (Jul 2023)

Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image

  • Ling Zhu,
  • Feifei Wang,
  • Xue Chen,
  • Qian Dong,
  • Nan Xia,
  • Jingjing Chen,
  • Zheng Li,
  • Chengzhan Zhu

DOI
https://doi.org/10.1186/s12880-023-01050-1
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Objective The indocyanine green retention rate at 15 min (ICG-R15) is a useful tool to evaluate the functional liver reserve before hepatectomy for liver cancer. Taking ICG-R15 as criteria, we investigated the ability of a machine learning (ML)-based radiomics model produced by Gd-EOB-DTPA-enhanced hepatic magnetic resonance imaging (MRI) or contrast-enhanced computed tomography (CT) image in evaluating functional liver reserve of hepatocellular carcinoma (HCC) patients. Methods A total of 190 HCC patients with CT, among whom 112 also with MR, were retrospectively enrolled and randomly classified into a training dataset (CT: n = 133, MR: n = 78) and a test dataset (CT: n = 57, MR: n = 34). Then, radiomics features from Gd-EOB-DTPA MRI and CT images were extracted. The features associated with the ICG-R15 classification were selected. Five ML classifiers were used for the ML-model investigation. The accuracy (ACC) and the area under curve (AUC) of receiver operating characteristic (ROC) with 95% confidence intervals (CI) were utilized for ML-model performance evaluation. Results A total of 107 different radiomics features were extracted from MRI and CT, respectively. The features related to ICG-R15 which was classified into 10%, 20% and 30% were selected. In MRI groups, classifier XGBoost performed best with its AUC = 0.917 and ACC = 0.882 when the threshold was set as ICG-R15 = 10%. When ICG-R15 = 20%, classifier Random Forest performed best with AUC = 0.979 and ACC = 0.882. When ICG-R15 = 30%, classifier XGBoost performed best with AUC = 0.961 and ACC = 0.941. For CT groups, the classifier XGBoost performed best when ICG-R15 = 10% with AUC = 0.822 and ACC = 0.842. When ICG-R15 = 20%, classifier SVM performed best with AUC = 0.860 and ACC = 0.842. When ICG-R15 = 30%, classifier XGBoost performed best with AUC = 0.938 and ACC = 0.965. Conclusions Both the MRI- and CT-based machine learning models are proved to be valuable noninvasive methods for functional liver reserve evaluation.

Keywords