Ce-doped Lu2Si2O7 has a high density, high luminescence efficiency even at high temperatures, and a high effective atomic number, making it a promising candidate for use as a radiation detector in medical devices and resource exploration equipment. In this study, we grow and characterize Pr3+ and Ce3+-doped Lu2Si2O7 single crystals by systematically varying the Ce3+ to Pr3+ ratio to further improve scintillation properties. The optical characterization results show a bidirectional energy transfer: from the Pr3+ 5d levels to the Ce3+ 5d levels and from the Ce3+ 5d levels to the Pr3+ 4f levels. Consistently with this result, the PL decay time of emission from the Pr3+ 5d–4f transition tends to become faster as the Ce3+/Pr3+ ratio increases, due to the energy transfer from the Pr3+ 5d levels to the Ce3+ 5d levels. Additionally, (Ce0.0022 Pr0.0016 Lu0.9962)2Si2O7 exhibits a high light yield comparable to Ce-doped Lu2Si2O7 and a slightly faster decay time than Ce-doped Lu2Si2O7.