Sensors (Oct 2024)

Towards the Development of the Clinical Decision Support System for the Identification of Respiration Diseases via Lung Sound Classification Using 1D-CNN

  • Syed Waqad Ali,
  • Muhammad Munaf Rashid,
  • Muhammad Uzair Yousuf,
  • Sarmad Shams,
  • Muhammad Asif,
  • Muhammad Rehan,
  • Ikram Din Ujjan

DOI
https://doi.org/10.3390/s24216887
Journal volume & issue
Vol. 24, no. 21
p. 6887

Abstract

Read online

Respiratory disorders are commonly regarded as complex disorders to diagnose due to their multi-factorial nature, encompassing the interplay between hereditary variables, comorbidities, environmental exposures, and therapies, among other contributing factors. This study presents a Clinical Decision Support System (CDSS) for the early detection of respiratory disorders using a one-dimensional convolutional neural network (1D-CNN) model. The ICBHI 2017 Breathing Sound Database, which contains samples of different breathing sounds, was used in this research. During pre-processing, audio clips were resampled to a uniform rate, and breathing cycles were segmented into individual instances of the lung sound. A One-Dimensional Convolutional Neural Network (1D-CNN) consisting of convolutional layers, max pooling layers, dropout layers, and fully connected layers, was designed to classify the processed clips into four categories: normal, crackles, wheezes, and combined crackles and wheezes. To address class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was applied to the training data. Hyperparameters were optimized using grid search with k−fold cross-validation. The model achieved an overall accuracy of 0.95, outperforming state-of-the-art methods. Particularly, the normal and crackles categories attained the highest F1-scores of 0.97 and 0.95, respectively. The model’s robustness was further validated through 5−fold and 10−fold cross-validation experiments. This research highlighted an essential aspect of diagnosing lung sounds through artificial intelligence and utilized the 1D-CNN to classify lung sounds accurately. The proposed advancement of technology shall enable medical care practitioners to diagnose lung disorders in an improved manner, leading to better patient care.

Keywords