iScience (Jan 2022)

Deep learning model of somatic hypermutation reveals importance of sequence context beyond hotspot targeting

  • Catherine Tang,
  • Artem Krantsevich,
  • Thomas MacCarthy

Journal volume & issue
Vol. 25, no. 1
p. 103668

Abstract

Read online

Summary: B cells undergo somatic hypermutation (SHM) of the Immunoglobulin (Ig) variable region to generate high-affinity antibodies. SHM relies on the activity of activation-induced deaminase (AID), which mutates C>U preferentially targeting WRC (W=A/T, R=A/G) hotspots. Downstream mutations at WA Polymerase η hotspots contribute further mutations. Computational models of SHM can describe the probability of mutations essential for vaccine responses. Previous studies using short subsequences (k-mers) failed to explain divergent mutability for the same k-mer. We developed the DeepSHM (Deep learning on SHM) model using k-mers of size 5–21, improving accuracy over previous models. Interpretation of DeepSHM identified an extended WWRCT motif with particularly high mutability. Increased mutability was further associated with lower surrounding G content. Our model also discovered a conserved AGYCTGGGGG (Y=C/T) motif within FW1 of IGHV3 family genes with unusually high T>G substitution rates. Thus, a wider sequence context increases predictive power and identifies features that drive mutational targeting.

Keywords