World Electric Vehicle Journal (Sep 2024)

Vehicle Route Planning of Diverse Cargo Types in Urban Logistics Based on Enhanced Ant Colony Optimization

  • Lingling Tan,
  • Kequan Zhu,
  • Junkai Yi

DOI
https://doi.org/10.3390/wevj15090405
Journal volume & issue
Vol. 15, no. 9
p. 405

Abstract

Read online

In the realm of urban logistics, optimizing vehicle routes for varied cargo types—including refrigerated, fragile, and standard cargo—poses significant challenges amid complex urban infrastructures and heterogeneous vehicle capacities. This research paper introduces a novel model for the multi-type capacitated vehicle routing problem (MT-CVRP) that harnesses an advanced ant colony optimization algorithm, dubbed Lévy-EGACO. This algorithm integrates Lévy flights and elitist guiding principles, enhancing search efficacy and pheromone update processes. The primary objective of this study is to minimize overall transportation costs while optimizing the efficiency of intricate route planning for vehicles with diverse load capacities. Through rigorous simulation experiments, we corroborated the validity of the proposed model and the effectiveness of the Lévy-EGACO algorithm in optimizing urban cargo transportation routes. Lévy-EGACO demonstrated a consistent reduction in transportation costs, ranging from 1.8% to 2.5% compared to other algorithms, across different test scenarios following base data modifications. These findings reveal that Lévy-EGACO substantially improves route optimization, presenting a robust solution to the challenges of MT-CVRP within urban logistics frameworks.

Keywords