The current work focuses on the synthesis of hybrid nanoparticles (NPs) made of a silica core (Si NPs) coated with discrete gold nanoparticles (Au NPs), which exhibit localized surface plasmon resonance (LSPR) properties. This plasmonic effect is directly related to the nanoparticles size and arrangement. In this paper, we explore a wide range of size for the silica cores (80, 150, 400, and 600 nm) and for the gold NPs (8, 10, and 30 nm). Some rational comparison between different functionalization techniques and different synthesis methods for the Au NPs are proposed, related to the optical properties and colloidal stability in time. An optimized, robust and reliable synthesis route is established, which improves the gold density and homogeneity. The performances of these hybrid nanoparticles are evaluated in order to be used in the shape of a dense layer for pollutant detection in gas or liquids, and find numerous applications as a cheap and new optical device.