Communications Materials (Aug 2024)

Material engineering and application of hybrid biomimetic-de novo designed elastin-like polypeptides

  • Zhuoran Geng,
  • Timo Laakko,
  • Ari Hokkanen,
  • Caj Södergård,
  • Ilari Maasilta,
  • Pezhman Mohammadi

DOI
https://doi.org/10.1038/s43246-024-00597-y
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The global concern over environmental consequences of petrochemical-derived plastics underscores the urgent need for sustainable and biodegradable polymers. In this context, elastin-like polypeptides emerge as a promising solution, offering multiple advantages, including remarkable mechanical properties, biocompatibility, customizable functionalities, and renewable sourcing through biosynthetic production in microbes, making them a compelling choice for various applications. We previously demonstrated accelerated engineering of a new class of elastin-like polypeptide‐based materials through hybrid biomimetic‐de novo predictive molecular design. The resulting variants exhibited enhanced molecular stability compared to their natural counterparts, catering to a range of technical applications that involve harsh downstream processing conditions. Here, we showcase the use of some of these previously discovered hybrid variants and illustrate the effective translation of the predicted molecular designs in structural and functional materials in several high-added-value applications. This includes multiscale drug-encapsulating vehicles with controlled release, multifunctional wound coverings, and all-aqueous-based biobased photoresists for creating 2D/3D microstructures.