Geofluids (Jan 2021)

Research on Full-Section Anchor Cable and C-Shaped Tube Support System of Deep Layer Roadway

  • Renliang Shan,
  • Shupeng Zhang,
  • Pengcheng Huang,
  • Weijun Liu

DOI
https://doi.org/10.1155/2021/5593601
Journal volume & issue
Vol. 2021

Abstract

Read online

Deep roadway deformation due to soft rock, rock dip, and horizontal tectonic stress is uneven and asymmetrical primarily in large loose zones. Traditional anchor support is influenced by the yield strength and shear strength of the anchors and has a limited prestress capacity or shear resistance. When the roadway roof is laminated rock or when the roadway passes through layered rock or rock interfaces, interlayer sliding commonly occurs, which can easily lead to anchor cables being sheared off. The tape tunnel in the Zhengling Mine passes through several rock strata and requires anchors to achieve a high shear resistance and prestress. To solve these problems, an anchor cable and C-shaped tube that can bear lateral shear forces were developed, and a full-section anchor cable and C-shaped tube support system were created based on extruded arch theory. Numerical results from FLAC3D show that the new scheme effectively controls surface convergence and plastic zone extension. Field tests have demonstrated that the amount of surface displacement was at least 42% smaller in the new support scheme. The extruded arch formed by the highly prestressed anchor cable and concrete spray layer can effectively control the bulking load within the loose zone, and the ACC effectively resists interlayer shear.