Electronic Journal of Qualitative Theory of Differential Equations (Aug 2016)

Necessary conditions for reaction-diffusion system with delay preserving positivity

  • Lirui Feng,
  • Xue Zhang,
  • Jianhong Wu,
  • Messoud Efendiev

DOI
https://doi.org/10.14232/ejqtde.2016.8.13
Journal volume & issue
Vol. 2016, no. 13
pp. 1 – 7

Abstract

Read online

We consider the reaction--diffusion system with delay \begin{equation*} \left\{\begin{aligned} &\frac{\partial u}{\partial t}=A(t,x)\Delta u-\sum_{i=1}^{k}\gamma_{i}(t,x)\partial_{x_{i}}u +f(t,u_{t}) , &x\in \Omega; \\ &B(u)|_{\partial \Omega}=0.\\ \end{aligned} \right. \end{equation*} We show that this system with delay preserves positivity if and only if its diffusion matrix $A$ and convection matrix $\gamma_{i}$ are diagonal with non-negative elements and nonlinear delay term $f$ satisfies the normal tangential condition.

Keywords