Sensors (Jan 2025)
A Deep-Learning Method for Remaining Useful Life Prediction of Power Machinery via Dual-Attention Mechanism
Abstract
Remaining useful life (RUL) prediction is a cornerstone of Prognostic and Health Management (PHM) for power machinery, playing a crucial role in ensuring the reliability and safety of these critical systems. In recent years, deep learning techniques have shown great promise in RUL prediction, providing more reliable and accurate outcomes. However, existing models often struggle with comprehensive feature extraction, especially in capturing the complex behavior of power machinery, where non-linear degradation patterns arise under varying operational conditions. To tackle this limitation, we propose a multi-feature fusion model leveraging a dual-attention mechanism. Initially, convolutional neural networks (CNNs) and channel attention mechanisms are employed to preliminarily extract spatial features. Subsequently, a layer combining a Gate Recurrent Unit (GRU) and self-attention mechanisms is used to further extract and integrate temporal features. Finally, RUL values are predicted via regression. The effectiveness of the proposed method was validated on C-MAPSS datasets, and its superior performance in RUL prediction was demonstrated through comparative analysis with other methods.
Keywords