Daily oscillations of neuronal membrane capacitance
Daniel Severin,
Cristián Moreno,
Trinh Tran,
Christian Wesselborg,
Sofia Shirley,
Altagracia Contreras,
Alfredo Kirkwood,
Jorge Golowasch
Affiliations
Daniel Severin
Johns Hopkins Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Rm. 350 Dunning Hall, 3400 N. Charles St., Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
Cristián Moreno
Johns Hopkins Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Rm. 350 Dunning Hall, 3400 N. Charles St., Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
Trinh Tran
Johns Hopkins Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Rm. 350 Dunning Hall, 3400 N. Charles St., Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
Christian Wesselborg
Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
Sofia Shirley
Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
Altagracia Contreras
Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
Alfredo Kirkwood
Johns Hopkins Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Rm. 350 Dunning Hall, 3400 N. Charles St., Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Corresponding author
Jorge Golowasch
Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA; Corresponding author
Summary: Capacitance of biological membranes is determined by the properties of the lipid portion of the membrane as well as the morphological features of a cell. In neurons, membrane capacitance is a determining factor of synaptic integration, action potential propagation speed, and firing frequency due to its direct effect on the membrane time constant. Besides slow changes associated with increased morphological complexity during postnatal maturation, neuronal membrane capacitance is considered a stable, non-regulated, and constant magnitude. Here we report that, in two excitatory neuronal cell types, pyramidal cells of the mouse primary visual cortex and granule cells of the hippocampus, the membrane capacitance significantly changes between the start and the end of a daily light-dark cycle. The changes are large, nearly 2-fold in magnitude in pyramidal cells, but are not observed in cortical parvalbumin-expressing inhibitory interneurons. Consistent with daily capacitance fluctuations, the time window for synaptic integration also changes in pyramidal cells.