Cell Reports (May 2017)

Regnase-1 Maintains Iron Homeostasis via the Degradation of Transferrin Receptor 1 and Prolyl-Hydroxylase-Domain-Containing Protein 3 mRNAs

  • Masanori Yoshinaga,
  • Yoshinari Nakatsuka,
  • Alexis Vandenbon,
  • Daisuke Ori,
  • Takuya Uehata,
  • Tohru Tsujimura,
  • Yutaka Suzuki,
  • Takashi Mino,
  • Osamu Takeuchi

DOI
https://doi.org/10.1016/j.celrep.2017.05.009
Journal volume & issue
Vol. 19, no. 8
pp. 1614 – 1630

Abstract

Read online

Iron metabolism is regulated by transcriptional and post-transcriptional mechanisms. The mRNA of the iron-controlling gene, transferrin receptor 1 (TfR1), has long been believed to be negatively regulated by a yet-unidentified endonuclease. Here, we show that the endonuclease Regnase-1 is critical for the degradation of mRNAs involved in iron metabolism in vivo. First, we demonstrate that Regnase-1 promotes TfR1 mRNA decay. Next, we show that Regnase-1−/− mice suffer from severe iron deficiency anemia, although hepcidin expression is downregulated. The iron deficiency anemia is induced by a defect in duodenal iron uptake. We reveal that duodenal Regnase-1 controls the expression of PHD3, which impairs duodenal iron uptake via HIF2α suppression. Finally, we show that Regnase-1 is a HIF2α-inducible gene and thus provides a positive feedback loop for HIF2α activation via PHD3. Collectively, these results demonstrate that Regnase-1-mediated regulation of iron-related transcripts is essential for the maintenance of iron homeostasis.

Keywords