Single-Element Dual-Interferometer for Precision Inertial Sensing: Sub-Picometer Structural Stability and Performance as a Reference for Laser Frequency Stabilization
Victor Huarcaya,
Miguel Dovale Álvarez,
Kohei Yamamoto,
Yichao Yang,
Stefano Gozzo,
Pablo Martínez Cano,
Moritz Mehmet,
Juan José Esteban Delgado,
Jianjun Jia,
Gerhard Heinzel
Affiliations
Victor Huarcaya
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Miguel Dovale Álvarez
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Kohei Yamamoto
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Yichao Yang
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Stefano Gozzo
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Pablo Martínez Cano
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Moritz Mehmet
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Juan José Esteban Delgado
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Jianjun Jia
Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Gerhard Heinzel
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Future GRACE-like geodesy missions could benefit from adopting accelerometer technology akin to that of the LISA Pathfinder, which employed laser interferometric readout at the sub-picometer level in addition to the conventional capacitive sensing, which is at best at the level of 100 pm. Improving accelerometer performance holds great potential to enhance the scientific output of forthcoming missions, carrying invaluable implications for research in climate, water resource management, and disaster risk reduction. To reach sub-picometer displacement sensing precision in the millihertz range, laser interferometers rely on suppression of laser-frequency noise by several orders of magnitude. Many optical frequency stabilization methods are available with varying levels of complexity, size, and performance. In this paper, we describe the performance of a Mach–Zehnder interferometer based on a compact monolithic optic. The setup consists of a commercial fiber injector, a custom-designed pentaprism used to split and recombine the laser beam, and two photoreceivers placed at the complementary output ports of the interferometer. The structural stability of the prism is transferred to the laser frequency via amplification, integration, and feedback of the balanced-detection signal, achieving a fractional frequency instability better than 6 parts in 1013, corresponding to an interferometer pathlength stability better than 1pm/Hz. The prism was designed to host a second interferometer to interrogate the position of a test mass. This optical scheme has been dubbed “single-element dual-interferometer” or SEDI.