Revista Facultad de Ingeniería Universidad de Antioquia (Sep 2017)

Accelerating the computation of the volume of tissue activated during deep brain stimulation using Gaussian processes

  • Iván De La Pava Panche,
  • Viviana Gómez-Orozco,
  • Mauricio Alexander Álvarez-López,
  • Óscar Alberto Henao-Gallo,
  • Genaro Daza-Santacoloma,
  • Alvaro Ángel Orozco-Gutiérrez

DOI
https://doi.org/10.17533/udea.redin.n84a03
Journal volume & issue
no. 84

Abstract

Read online

The volume of tissue activated (VTA) is a well-established approach to model the direct effect of deep brain stimulation (DBS) on neural tissue. Previous studies have pointed to its potential clinical applications. However, the elevated computational runtime required to estimate the VTA with standard techniques used in biological neural modeling limits its suitability for practical use. The goal of this study was to develop a novel methodology to reduce the computation time of VTA estimation. To that end, we built a Gaussian process emulator. It combines multicompartment axon models coupled to the stimulating electric field with a Gaussian process classifier (GPC), following the premise that computing the VTA from a field of axons is in essence a binary classification problem. We achieved a considerable reduction in the average time required to estimate the VTA, under both ideal isotropic and realistic anisotropic brain tissue conductive conditions, limiting the loss of accuracy and overcoming other drawbacks entailed by alternative methods.

Keywords