Boletim da Sociedade Paranaense de Matemática (Feb 2022)
On the existence solutions for some Nonlinear elliptic problem
Abstract
In the present paper, we study the existence and regularity of positive solutions for the following boundary value problem : $\mathrm{-div}\> \big( \lvert\nabla u\rvert^{p-2}\nabla u ) + u^{s} = \dfrac{f}{u^{\alpha}}\mbox{ in } \Omega \mbox{ and } u=0\mbox{ on } \partial\Omega,$ where $ \Omega $ is an open and bounded subset of $ \mathbb{R}^{N} $ $ (N> p>1) $, $ 0<\alpha\leq 1 $, $ s\geq 1 $ and $f$ is a nonnegative function that belongs to some Lebesgue space.