Toxics (Oct 2021)

Mercury Chloride Impacts on the Development of Erythrocytes and Megakaryocytes in Mice

  • Jinyi He,
  • Yifan Zhao,
  • Tingting Zhu,
  • Peng Xue,
  • Weiwei Zheng,
  • Ye Yao,
  • Weidong Qu,
  • Xiaodong Jia,
  • Rongzhu Lu,
  • Miao He,
  • Yubin Zhang

DOI
https://doi.org/10.3390/toxics9100252
Journal volume & issue
Vol. 9, no. 10
p. 252

Abstract

Read online

Inorganic mercury (Hg2+) is a highly toxic heavy metal. The aim of this study was to investigate the impact of Hg2+ on the development of erythrocytes and megakaryocytes. B10.S mice (H-2s) and DBA/2 mice (H-2d) were administrated with 10 μM HgCl2 or 50 μM HgCl2 via drinking water for four weeks, and erythro-megakaryopoiesis was evaluated thereafter. The administration of 50 μM HgCl2 increased the number of erythrocytes and platelets in B10.S mice, which was not due to a reduced clearance for mature erythrocytes. The administration of 50 μM HgCl2, but not 10 μM HgCl2, increased the number of progenitors for erythrocytes and megakaryocytes in the bone marrow (BM) of B10.S mice, including erythroid-megakaryocyte progenitors (EMPs), burst-forming unit-erythroid progenitors (BFU-Es), colony-forming unit-erythroid progenitors (CFU-Es), and megakaryocyte progenitors (MkPs). Moreover, 50 μM HgCl2 caused EMPs to be more proliferative and possess an increased potential for differentiation into committed progenies in B10.S mice. Mechanistically, 50 μM HgCl2 increased the expression of the erythropoietin receptor (EPOR) in EMPs, thus enhancing the Jak2/STAT5 signaling pathway to promote erythro-megakaryopoiesis in B10.S mice. Conversely, 50 μM HgCl2 did not impact erythro-megakaryopoiesis in DBA/2 mice. This study may extend our current understanding for hematopoietic toxicology of Hg.

Keywords