Drug Design, Development and Therapy (Oct 2013)
Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells
Abstract
Mingrong Cheng,1,2,* Hongzhi Xu,3,* Yong Wang,4,* Houxiang Chen,5 Bing He,3 Xiaoyan Gao,6 Yingchun Li,2 Jiang Han,1 Zhiping Zhang1 1Department of General Surgery, 2Department of Endoscopy, Pudong New Area District Zhoupu Hospital, Shanghai, People’s Republic of China; 3Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China; 4School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People’s Republic of China; 5Zhejiang Huafon Fiber Research Institute, Zhejiang Huafon Spandex Co, Ltd, Wenzhou, People’s Republic of China; 6Department of Plastic Surgery, Pudong New Area District Zhoupu Hospital, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Modified chitosan nanoparticles are a promising platform for drug, such as 5-fluorouracil (5-FU), gene, and vaccine delivery. Here, we used chitosan and hepatoma cell-specific binding molecule glycyrrhetinic acid (GA) to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared spectroscopy and hydrogen nuclear magnetic resonance. By combining GA-CTS and 5-FU, we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 193.7 nm, drug loading of 1.56%, and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained-release system comprising three distinct phases of quick, steady, and slow release. In vitro data indicated that it had a dose- and time-dependent anticancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited cancer cell proliferation, resulting in increased survival time. The antitumor mechanisms for GA-CTS/5-FU nanoparticle were possibly associated with an increased expression of regulatory T-cells, decreased expression of cytotoxic T-cell and natural killer cells, and reduced levels of interleukin-2 and interferon gamma. Keywords: hepatic carcinoma, regulatory T cells, glycyrrhetinic acid, targeted therapy, 5-fluorouracil