Water (Mar 2021)

Influences of Dimethyl Phthalate on Bacterial Community and Enzyme Activity in Vertical Flow Constructed Wetland

  • QiaoLing Xu,
  • ShaoYong Lu,
  • Tao Yuan,
  • Feng Zhang,
  • Li Wang,
  • Ping Wang,
  • XueYuan Wen,
  • LiHua Cui

DOI
https://doi.org/10.3390/w13060788
Journal volume & issue
Vol. 13, no. 6
p. 788

Abstract

Read online

Dimethyl phthalate (DMP), belonging to the family of Phthalate esters (PAEs), is a plasticizer and has been widely used in the world for many years. Nowadays, it has become a ubiquitous environmental pollutant and is listed as an environmental priority pollutant by China’s Environmental Monitoring Center. The purpose of this study is to estimate the responses of the bacterial community and enzyme activity to DMP contamination in three vertical flow constructed wetlands (VFCW), namely the constructed wetland A (planted with Pennisetum sinese Roxb), constructed wetland B (planted with Pennisetum purpureum Schum.), and constructed wetland C (unplanted), respectively. The results showed that the relative percentages of some genera associated with nitrogen metabolism and the function of degrading aromatic hydrocarbons were increased by DMP contamination, such as Dechloromonas agitata, Pleomorphomonas sp., Denitratisoma oestradiolicum, Plasticicumulans lactativorans, Novosphingobium sp., Alicycliphilus denitrificans, and Thauera sp. Meanwhile, principal coordinate analysis (PCA) analysis showed that the addition of DMP divided 12 samples into two groups as followed: one was the DMP group containing a-1, a-2, b-1, b-2, c-1 and c-2 while the other was no DMP group including A-1, A-2, B-1, B-2, C-1 and C-2. It indicated that DMP was the main reason for this change. In addition, by monitoring the activity of substrate enzymes, the activity of urease, phosphatase, catalase, and invertase in the wetlands before and after the experiment, these were significantly higher in the upper layer than in the lower layer and maintained high activity. Ultimately, the average influent concentration of DMP in three VFCWs was 8.12 mg/L and the average removal efficiency of the effluent was over 90%. Our results suggested that DMP was an important factor affecting the microbial community structure of wetland and the upper layer of the VFCW was the main site for the degradation of DMP. VFCW has great potential for the removal of the high concentration of DMP and it can be a good choice for the treatment of PAEs.

Keywords