Remote Sensing (Mar 2020)

Automatic Tree Detection from Three-Dimensional Images Reconstructed from 360° Spherical Camera Using YOLO v2

  • Kenta Itakura,
  • Fumiki Hosoi

DOI
https://doi.org/10.3390/rs12060988
Journal volume & issue
Vol. 12, no. 6
p. 988

Abstract

Read online

It is important to grasp the number and location of trees, and measure tree structure attributes, such as tree trunk diameter and height. The accurate measurement of these parameters will lead to efficient forest resource utilization, maintenance of trees in urban cities, and feasible afforestation planning in the future. Recently, light detection and ranging (LiDAR) has been receiving considerable attention, compared with conventional manual measurement techniques. However, it is difficult to use LiDAR for widespread applications, mainly because of the costs. We propose a method for tree measurement using 360° spherical cameras, which takes omnidirectional images. For the structural measurement, the three-dimensional (3D) images were reconstructed using a photogrammetric approach called structure from motion. Moreover, an automatic tree detection method from the 3D images was presented. First, the trees included in the 360° spherical images were detected using YOLO v2. Then, these trees were detected with the tree information obtained from the 3D images reconstructed using structure from motion algorithm. As a result, the trunk diameter and height could be accurately estimated from the 3D images. The tree detection model had an F-measure value of 0.94. This method could automatically estimate some of the structural parameters of trees and contribute to more efficient tree measurement.

Keywords