Traditional ytterbium-doped high-power fiber lasers generally use a unidirectional output structure. To reduce the cost and improve the efficiency of the fiber laser, we propose a bidirectional output fiber laser (BOFL). The BOFL has many advantages over that of the traditional unidirectional output fiber laser (UOFL) and has a wide application in the industrial field. In theory, the model of the BOFL is established, and a comparison of the nonlinear effect in the traditional UOFL and the BOFL is studied. Experimentally, high-power continuous wave (CW) and quasi-continuous wave (QCW) BOFLs are demonstrated. In the continuous laser, we first combine the BOFL with the oscillating amplifying integrated structure, and a near-single-mode bidirectional 2 × 4 kW output with a total power of above 8 kW is demonstrated. Then, with the simple BOFL, a CW bidirectional 2 × 5 kW output with a total power of above 10 kW is demonstrated. By means of pump source modulation, a QCW BOFL is developed, and the output of a near-single mode QCW laser with a peak output of 2 × 4.5 kW with a total peak power of more than 9 kW is realized. Both CW and QCW output BOFL are the highest powers reported at present.