International Journal of Advanced Robotic Systems (May 2021)
A Novel 3-RRR Spherical Parallel Instrument for Daily Living Emulation (SPINDLE) for Functional Rehabilitation of Patients with Stroke
Abstract
Various robotic rehabilitation devices have been developed for acute stroke patients to ease therapist’s efforts and provide high-intensity training, which resulted in improved strength and functional recovery of patients; however, these improvements did not always transfer to the performance of activities of daily living (ADLs). This is because previous robotic training focuses on the proximal joints or training with exoskeleton-type devices, which do not reflect how humans interact with the environment. To improve the training effect of ADLs, a new robotic training paradigm is suggested with a parallel manipulator that mimics rotational ADL tasks. This study presents training of the proximal and distal joints simultaneously while performing manipulation tasks in a device named spherical parallel instrument for daily living emulation (SPINDLE). Six representative ADLs were chosen to show that both proximal and distal joints are trained when performing tasks with SPINDLE, as compared to the natural ADLs. These results show that SPINDLE can train individuals with movements similar to the ADLs while interacting with the manipulator. We envision using this compact tabletop device as a home-training device to increase the performance of ADLs by restoring the impaired motor function of stroke patients, leading to improved quality of life.