Biomolecules (Feb 2023)
Exploring Genetic Interactions with Telomere Protection Gene <i>pot1</i> in Fission Yeast
Abstract
The regulation of telomere length has a significant impact on cancer risk and aging in humans. Circular chromosomes are found in humans and are often unstable during mitosis, resulting in genome instability. Some types of cancer have a high frequency of a circular chromosome. Fission yeast is a good model for studying the formation and stability of circular chromosomes as deletion of pot1 (encoding a telomere protection protein) results in rapid telomere degradation and chromosome fusion. Pot1 binds to single-stranded telomere DNA and is conserved from fission yeast to humans. Loss of pot1 leads to viable strains in which all three fission yeast chromosomes become circular. In this review, I will introduce pot1 genetic interactions as these inform on processes such as the degradation of uncapped telomeres, chromosome fusion, and maintenance of circular chromosomes. Therefore, exploring genes that genetically interact with pot1 contributes to finding new genes and/or new functions of genes related to the maintenance of telomeres and/or circular chromosomes.
Keywords