Revista Facultad de Ingeniería Universidad de Antioquia (Nov 2022)
Aerodynamic investigation of extremely efficient vehicles under side wind conditions
Abstract
A vehicle is more stable when the geometric center, center of gravity, and stagnation point are in line. However, the inflow direction and velocity magnitude of the operational environment of road vehicles are varying. This study aims to investigate the aerodynamic behavior of a water-drop-shaped vehicle under side wind conditions. Some essential aerodynamic performances of the vehicle are numerically and graphically analyzed at 0 deg, 10 deg, and 20 deg of side wind directions. The value of the coefficient of drag, drag force, coefficient of lift, and lift force exponentially increases as the yaw angle elevates. The lower part on the area of the front-wheel compartment becomes the critical location indicated by the results on pressure coefficient, friction coefficient, and total wall shear stress distribution along the vehicle surface. Increasing the side wind angle triggers more significant vortex regions generated around the wheel compartment and on the leeward side of the vehicle.
Keywords