Journal of High Energy Physics (Sep 2019)

Noncommutative gauge theories on D-branes in non-geometric backgrounds

  • Chris Hull,
  • Richard J. Szabo

DOI
https://doi.org/10.1007/JHEP09(2019)051
Journal volume & issue
Vol. 2019, no. 9
pp. 1 – 41

Abstract

Read online

Abstract We investigate the noncommutative gauge theories arising on the worldvolumes of D-branes in non-geometric backgrounds obtained by T-duality from twisted tori. We revisit the low-energy effective description of D-branes on three-dimensional T-folds, examining both cases of parabolic and elliptic twists in detail. We give a detailed description of the decoupling limits and explore various physical consequences of the open string non-geometry. The T-duality monodromies of the non-geometric backgrounds lead to Morita duality monodromies of the noncommutative Yang-Mills theories induced on the D-branes. While the parabolic twists recover the well-known examples of noncommutative principal torus bundles from topological T-duality, the elliptic twists give new examples of noncommutative fibrations with non-geometric torus fibres. We extend these considerations to D-branes in backgrounds with R-flux, using the doubled geometry formulation, finding that both the non-geometric background and the D-brane gauge theory necessarily have explicit dependence on the dual coordinates, and so have no conventional formulation in spacetime.

Keywords